
D02 – Ordinary Differential Equations

D02EJF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02EJF integrates a stiff system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation
Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution
at points specified by the user, if desired.

2 Specification

SUBROUTINE D02EJF(X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, OUTPUT,
1 G, W, IW, IFAIL)
INTEGER N, IW, IFAIL
real X, XEND, Y(N), TOL, G, W(IW)
CHARACTER∗1 RELABS
EXTERNAL FCN, PEDERV, OUTPUT, G

3 Description

The routine advances the solution of a system of ordinary differential equations

y′
i = fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n,

from x = X to x = XEND using a variable-order, variable-step method implementing the BDF. The
system is defined by a subroutine FCN supplied by the user, which evaluates fi in terms of x and
y1, y2, . . . , yn (see Section 5). The initial values of y1, y2, . . . , yn must be given at x = X.

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if
desired: this solution is obtained by C1 interpolation on solution values produced by the method. As the
integration proceeds a check can be made on the user-specified function g(x, y) to determine an interval
where it changes sign. The position of this sign change is then determined accurately by C1 interpolation
to the solution. It is assumed that g(x, y) is a continuous function of the variables, so that a solution
of g(x, y) = 0.0 can be determined by searching for a change in sign in g(x, y). The accuracy of the
integration, the interpolation and, indirectly, of the determination of the position where g(x, y) = 0.0,
is controlled by the parameters TOL and RELABS. The Jacobian of the system y′ = f(x, y) may be
supplied in routine PEDERV, if it is available.

For a description of BDF and their practical implementation see Hall and Watt [1].

4 References

[1] Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X — real Input/Output

On entry: the initial value of the independent variable x.

Constraint: X �= XEND

On exit: if G is supplied by the user, X contains the point where g(x, y) = 0.0, unless g(x, y) �= 0.0
anywhere on the range X to XEND, in which case, X will contain XEND. If G is not supplied X
contains XEND, unless an error has occurred, when it contains the value of x at the error.

[NP3390/19/pdf] D02EJF.1

D02EJF D02 – Ordinary Differential Equations

2: XEND — real Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND �= X.

3: N — INTEGER Input

On entry: the number of differential equations, n.

Constraint: N ≥ 1.

4: Y(N) — real array Input/Output

On entry: the initial values of the solution y1, y2, . . . , yn at x = X.

On exit: the computed values of the solution at the final point x = X.

5: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y′
i) for given values of its arguments

x, y1, . . . , yn.

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, Y(n), F(n)

where n is the actual value of N in the call of D02EJF.

1: X — real Input
On entry: the value of the independent variable x.

2: Y(n) — real array Input
On entry: the value of the variable yi, for i = 1, 2, . . . , n.

3: F(n) — real array Output
On exit: the value of fi, for i = 1, 2, . . . , n.

FCN must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

6: PEDERV — SUBROUTINE, supplied by the user. External Procedure

PEDERV must evaluate the Jacobian of the system (that is, the partial derivatives ∂fi

∂yj
) for given

values of the variables x, y1, y2, . . . , yn.

Its specification is:

SUBROUTINE PEDERV(X, Y, PW)
real X, Y(n), PW(n,n)

where n is the actual value of N in the call of D02EJF.

1: X — real Input
On entry: the value of the independent variable x.

2: Y(n) — real array Input
On entry: the value of the variable yi, for i = 1, 2, . . . , n.

3: PW(n,n) — real array Output
On exit: the value of ∂fi

∂yj
, for i, j = 1, 2, . . . , n.

D02EJF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02EJF

If the user does not wish to supply the Jacobian, the actual argument PEDERV must be the dummy
routine D02EJY. (D02EJY is included in the NAG Fortran Library and so need not be supplied by
the user. The name may be implementation dependent: see the User’s Note for your implementation
for details).
PEDERV must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

7: TOL — real Input/Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration. Hence
TOL affects the determination of the position where g(x, y) = 0.0, if G is supplied.

D02EJF has been designed so that, for most problems, a reduction in TOL leads to an approximately
proportional reduction in the error in the solution. However, the actual relation between TOL and
the accuracy achieved cannot be guaranteed. The user is strongly recommended to call D02EJF with
more than one value for TOL and to compare the results obtained to estimate their accuracy. In
the absence of any prior knowledge, the user might compare the results obtained by calling D02EJF
with TOL = 10−p and TOL = 10−p−1 if p correct decimal digits are required in the solution.

Constraint: TOL > 0.0.

On exit: normally unchanged. However if the range X to XEND is so short that a small change in
TOL is unlikely to make any change in the computed solution, then, on return, TOL has its sign
changed.

8: RELABS — CHARACTER*1 Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, EST, is made. For the current step to be accepted the following condition must be satisfied:

EST =

√√√√ 1
n

n∑
i=1

(ei/(τr × |yi|+ τa))2 ≤ 1.0

where τr and τa are defined by

RELABS τr τa

’M’ TOL TOL

’A’ 0.0 TOL

’R’ TOL ε

’D’ TOL ε

where ε is a small machine-dependent number and ei is an estimate of the local error at yi, computed
internally. If the appropriate condition is not satisfied, the step size is reduced and the solution is
recomputed on the current step. If the user wishes to measure the error in the computed solution in
terms of the number of correct decimal places, then RELABS should be set to ’A’ on entry, whereas
if the error requirement is in terms of the number of correct significant digits, then RELABS should
be set to ’R’. If the user prefers a mixed error test, then RELABS should be set to ’M’, otherwise
if the user has no preference, RELABS should be set to the default ’D’. Note that in this case ’D’
is taken to be ’R’.

Constraint: RELABS = ’A’, ’M’, ’R’ or ’D’.

9: OUTPUT — SUBROUTINE, supplied by the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02EJF with XSOL = X
(the initial value of x). The user must reset XSOL to the next point (between the current XSOL
and XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02EJF will integrate to XEND with no further
calls to OUTPUT; if a call to OUTPUT is required at the point XSOL = XEND, then XSOL must
be given precisely the value XEND.

[NP3390/19/pdf] D02EJF.3

D02EJF D02 – Ordinary Differential Equations

Its specification is:

SUBROUTINE OUTPUT(XSOL, Y)
real XSOL, Y(n)

where n is the actual value of N in the call of D02EJF.

1: XSOL — real Input/Output
On entry: the value of the independent variable x.

On exit: the user must set XSOL to the next value of x at which OUTPUT is to be called.

2: Y(n) — real array Input
On entry: the computed solution at the point XSOL.

If the user does not wish to access intermediate output, the actual argument OUTPUT must be
the dummy routine D02EJX. (D02EJX is included in the NAG Fortran Library and so need not
be supplied by the user. The name may be implementation-dependent: see the the Users’ Note for
your implementation for details.)
OUTPUT must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

10: G — real FUNCTION, supplied by the user. External Procedure

G must evaluate the function g(x, y) for specified values x, y. It specifies the function g for which
the first position x where g(x, y) = 0 is to be found.

Its specification is:

real FUNCTION G(X, Y)
real X, Y(n)

where n is the actual value of N in the call of D02EJF.

1: X — real Input
On entry: the value of the independent variable x.

2: Y(n) — real array Input
On entry: the value of the variable yi, for i = 1, 2, . . . , n.

If the user does not require the root finding option, the actual argument G must be the dummy
routine D02EJW. (D02EJW is included in the NAG Fortran Library and so need not be supplied
by the user. The name may be implementation-dependent: see the the Users’ Note for your
implementation for details.)
G must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters
denoted as Input must not be changed by this procedure.

11: W(IW) — real array Workspace
12: IW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02EJF is
called.

Constraint: IW ≥ (12 + N)×N+ 50.

13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

D02EJF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02EJF

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, TOL ≤ 0.0,

or X = XEND,

or N ≤ 0,

or RELABS �= ’M’, ’A’, ’R’, ’D’,

or IW < (12 + N)×N+ 50.

IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x = X. (See Section 5 for a discussion of this error test.) The components
Y(1),Y(2), . . . ,Y(n) contain the computed values of the solution at the current point x = X. If
the user has supplied G, then no point at which g(x, y) changes sign has been located up to the
point x = X.

IFAIL = 3

TOL is too small for D02EJF to take an initial step. X and Y(1),Y(2), . . . ,Y(n) retain their initial
values.

IFAIL = 4

XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the
OUTPUT option was selected.

IFAIL = 5

A value of XSOL returned by OUTPUT lies behind the last value of XSOL in the direction of
integration, if the OUTPUT option was selected.

IFAIL = 6

At no point in the range X to XEND did the function g(x, y) change sign, if G was supplied. It is
assumed that g(x, y) = 0 has no solution.

IFAIL = 7

A serious error has occurred in an internal call to C05AZF. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL = 8

A serious error has occurred in an internal call to D02XKF. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL = 9

A serious error has occurred in an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
Users are advised to choose RELABS = ’R’ unless they have a good reason for a different choice. It is
particularly appropriate if the solution decays.

If the problem is a root-finding one, then the accuracy of the root determined will depend strongly on
∂g
∂x and ∂g

∂yi
, for i = 1, 2, . . . , n. Large values for these quantities may imply large errors in the root.

[NP3390/19/pdf] D02EJF.5

D02EJF D02 – Ordinary Differential Equations

8 Further Comments

If more than one root is required, then to determine the second and later roots D02EJF may be called
again starting a short distance past the previously determined roots. Alternatively the user may construct
his own root finding code using D02NBF (and other routines of the subchapter D02M–D02N), D02XKF
and C05AZF.

If it is easy to code, the user should supply the routine PEDERV. However, it is important to be aware
that if PEDERV is coded incorrectly, a very inefficient integration may result and possibly even a failure
to complete the integration (IFAIL = 2).

9 Example

We illustrate the solution of five different problems. In each case the differential system is the well-known
stiff Robertson problem.

a′ = −0.04a− 104bc
b′ = 0.04a− 104bc−3× 107b2

c′ = 3× 107b2

with initial conditions a = 1.0, b = c = 0.0 at x = 0.0. We solve each of the following problems with local
error tolerances 1.0E−3 and 1.0E−4.

(i) To integrate to x = 10.0 producing output at intervals of 2.0 until a point is encountered where
a = 0.9. The Jacobian is calculated numerically.

(ii) As (i) but with the Jacobian calculated analytically.
(iii) As (i) but with no intermediate output.
(iv) As (i) but with no termination on a root-finding condition.
(v) Integrating the equations as in (i) but with no intermediate output and no root-finding termination

condition.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02EJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, IW
PARAMETER (N=3,IW=(12+N)*N+50)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
real H, XEND
INTEGER K

* .. Local Scalars ..
real TOL, X
INTEGER I, IFAIL, J

* .. Local Arrays ..
real W(IW), Y(N)

* .. External Functions ..
real D02EJW, G
EXTERNAL D02EJW, G

* .. External Subroutines ..
EXTERNAL D02EJF, D02EJX, D02EJY, FCN, OUT, PEDERV

* .. Intrinsic Functions ..
INTRINSIC real

* .. Common blocks ..
COMMON XEND, H, K

D02EJF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02EJF

* .. Executable Statements ..
WRITE (NOUT,*) ’D02EJF Example Program Results’
XEND = 10.0e0
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 20 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,OUT,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

20 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 2: calculating Jacobian by PEDERV,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 40 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,PEDERV,TOL,’Default’,OUT,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

40 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 3: calculating Jacobian internally,’
WRITE (NOUT,*) ’ no intermediate output, root-finding’
DO 60 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL

[NP3390/19/pdf] D02EJF.7

D02EJF D02 – Ordinary Differential Equations

X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,D02EJX,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

60 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 4: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, no root-finding’
DO 80 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,OUT,D02EJW,W,

+ IW,IFAIL)
*

IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 5: calculating Jacobian internally,’
WRITE (NOUT,*)

+ ’ no intermediate output, no root-finding (integrate to XEND)’
DO 100 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99996) X, (Y(I),I=1,N)
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,D02EJX,D02EJW,

+ W,IW,IFAIL)
*

WRITE (NOUT,99996) X, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

100 CONTINUE

D02EJF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02EJF

STOP
*
99999 FORMAT (1X,A,e8.1)
99998 FORMAT (1X,A,F7.3)
99997 FORMAT (1X,A,3F13.5)
99996 FORMAT (1X,F8.2,3F13.5)

END
*

SUBROUTINE FCN(T,Y,F)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real F(N), Y(N)

* .. Executable Statements ..
F(1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3)
F(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*Y(2)
F(3) = 3.0e7*Y(2)*Y(2)
RETURN
END

*
SUBROUTINE PEDERV(X,Y,PW)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real PW(N,N), Y(N)

* .. Executable Statements ..
PW(1,1) = -0.04e0
PW(1,2) = 1.0e4*Y(3)
PW(1,3) = 1.0e4*Y(2)
PW(2,1) = 0.04e0
PW(2,2) = -1.0e4*Y(3) - 6.0e7*Y(2)
PW(2,3) = -1.0e4*Y(2)
PW(3,1) = 0.0e0
PW(3,2) = 6.0e7*Y(2)
PW(3,3) = 0.0e0
RETURN
END

*
real FUNCTION G(T,Y)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real Y(N)

* .. Executable Statements ..
G = Y(1) - 0.9e0
RETURN
END

*

[NP3390/19/pdf] D02EJF.9

D02EJF D02 – Ordinary Differential Equations

SUBROUTINE OUT(X,Y)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real Y(N)

* .. Scalars in Common ..
real H, XEND
INTEGER I

* .. Local Scalars ..
INTEGER J

* .. Intrinsic Functions ..
INTRINSIC real

* .. Common blocks ..
COMMON XEND, H, I

* .. Executable Statements ..
WRITE (NOUT,99999) X, (Y(J),J=1,N)
X = XEND - real(I)*H
I = I - 1
RETURN

*
99999 FORMAT (1X,F8.2,3F13.5)

END

9.2 Program Data

None.

9.3 Program Results

D02EJF Example Program Results

Case 1: calculating Jacobian internally,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

D02EJF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02EJF

Case 2: calculating Jacobian by PEDERV,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally,
no intermediate output, root-finding

Calculation with TOL = 0.1E-02
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 4: calculating Jacobian internally,
intermediate output, no root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447
6.00 0.87930 0.00002 0.12068
8.00 0.85858 0.00002 0.14140
10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
6.00 0.87926 0.00002 0.12072
8.00 0.85854 0.00002 0.14145
10.00 0.84136 0.00002 0.15863

[NP3390/19/pdf] D02EJF.11

D02EJF D02 – Ordinary Differential Equations

Case 5: calculating Jacobian internally,
no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15863

D02EJF.12 (last) [NP3390/19/pdf]

